Заказать звонок

Мы работаем без праздников и выходных.

Бесплатный выезд специалиста на объект.

98% клиентов рекомендуют нас своим знакомым

Доставка осуществляется по всей России
3. СХЕМЫ И СИСТЕМЫ КАНАЛИЗАЦИИ
СХЕМЫ И СИСТЕМЫ КАНАЛИЗАЦИИ
НАСЕЛЕННЫХ ПУНКТОВ
3.1. Канализование населенных пунктов следует предусматривать по системам: раздельной — полной или неполной, полураздельной, а также комбинированной.
Отведение поверхностных вод по открытой системе водостоков допускается при соответствующем обосновании и согласовании с органами санитарно-эпидемиологической службы, по регулированию и охране вод, а также с органами охраны рыбных запасов.
3.2. Выбор системы канализации следует производить с учетом требований к очистке поверхностных сточных вод, климатических условий, рельефа местности и других факторов.
В районах с интенсивностью дождей q20 менее 90 л/с на 1 га следует рассматривать возможность применения полураздельной системы канализации.
СИСТЕМЫ КАНАЛИЗАЦИИ
МАЛЫХ НАСЕЛЕННЫХ ПУНКТОВ (ДО 5000 ЧЕЛ.)
И ОТДЕЛЬНО СТОЯЩИХ ЗДАНИЙ
3.3. Канализацию малых населенных пунктов следует предусматривать, как правило, по неполной раздельной системе.
3.4. Для малых населенных пунктов следует предусматривать, как правило, централизованные схемы канализации для одного или нескольких населенных пунктов, отдельных групп зданий и производственных зон.
Централизованные схемы канализации следует проектировать объединенными для жилых и производственных зон, исключая навозсодержащие сточные воды, при этом объединение производственных сточных вод с бытовыми должно производиться с учетом п. 3.18.
Устройство централизованных схем раздельно для жилой и производственной зон допускается при технико-экономическом обосновании.
3.5. Децентрализованные схемы канализации допускается предусматривать:
при отсутствии опасности загрязнения используемых для водоснабжения водоносных горизонтов;
при отсутствии централизованной канализации в существующих или реконструируемых населенных пунктах для объектов, которые должны быть канализованы в первую очередь (больниц, школ, детских садов и яслей, административно-хозяйственных зданий, отдельных жилых домов промышленных предприятий и т. п.), а также для первой стадии строительства населенных пунктов при расположении объектов канализования на расстоянии не менее 500 м:
при необходимости канализования групп или отдельных зданий.
3.6. Для очистки сточных вод при централизованной схеме канализации следует применять сооружения:
естественной биологической очистки (поля фильтрации, биологические пруды);
искусственной биологической очистки (аэротенки и биофильтры различных типов, циркуляционные окислительные каналы);
физико-химической очистки для вахтовых поселков с временным пребыванием персонала и для других объектов с периодическим пребыванием людей.
3.7. Для очистки сточных вод при децентрализованной схеме канализации следует применять фильтрующие колодцы, поля подземной фильтрации, песчано-гравийные фильтры, фильтрующие траншеи, аэротенки на полное окисление, сооружения физико-химической очистки для объектов периодического функционирования (пионерских лагерей, туристских баз и т. п.).
3.8. Для очистки сточных вод малых населенных пунктов целесообразно применение установок заводского изготовления по ГОСТ 25298—82.
3.9. Для отдельно стоящих зданий при расходе бытовых сточных вод до 1 м3/сут допускается устройство люфт-клозетов или выгребов.
3.10. Обработку сточных вод прачечных, загрязненных синтетическими поверхностно-активными веществами (СПАВ), допускается производить совместно с бытовыми сточными водами при отношении их количеств 1:9. Для банно-прачечных сточных вод это отношение следует принимать 1:4, для банных — 1:1. При обосновании допускается применение регулирующих резервуаров.
При большом количестве банно-прачечных сточных вод следует предусматривать их обработку для обеспечения допустимой концентрации СПАВ.
3.11. По подаче сточных вод на очистные сооружения насосами расчет очистных сооружений малых населенных пунктов следует производить на расход, равный производительности насосных установок.
СХЕМА КАНАЛИЗОВАНИЯ ПОВЕРХНОСТНЫХ
СТОЧНЫХ ВОД С ТЕРРИТОРИЙ НАСЕЛЕННЫХ ПУНКТОВ
И ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ
3.21. При раздельной системе канализации очистку поверхностных сточных вод с территории города следует осуществлять на локальных или централизованных очистных сооружениях поверхностного стока. При этом в зависимости от предъявляемых требований следует, как правило, применять сооружения механической очистки {решетки, песколовки, отстойники, фильтры). В некоторых случаях возможна совместная очистка поверхностных, бытовых и производственных сточных вод на общих очистных сооружениях, при этом поверхностные сточные воды следует аккумулировать в накопителях и подавать в систему канализации в часы минимального притока городских сточных вод.
3.22. При полураздельной системе канализации очистку смеси поверхностных вод с бытовыми и производственными сточными водами следует осуществлять по полной схеме очистки, принятой для городских сточных вод.
Для снижения гидравлической нагрузки на очистные сооружения допускается использование регулирующих емкостей.
3.23. Поверхностные сточные воды с территорий промышленных предприятий следует подвергать очистке.
Разработка мероприятий по очистке поверхностных сточных вод на предприятиях должна основываться на натурных данных об источниках загрязнения территории и воздуха, характеристике водосборного бассейна, сведениях об атмосферных осадках, выпадающих в данном районе, режимах полива и мойки территории.
Если территория предприятия по составу и количеству накапливающихся на поверхности примесей мало отличается от селитебной, поверхностные сточные воды могут быть направлены в дождевую канализацию населенного пункта.
3.24. Выбор схемы отведения поверхностных сточных вод на очистку должен осуществляться на основе оценки технической возможности и экономической целесообразности:
использования, как правило, поверхностных сточных вод в системах производственного водоснабжения;
самостоятельной очистки поверхностных сточных вод.
3.25. При разработке схемы отведения и очистки поверхностных сточных вод в зависимости от конкретных условий (источников загрязнения, размеров, расположения и рельефа водосборного бассейна и др.) следует учитывать необходимость локализации отдельных участков производственной территории, на которые могут попадать вредные вещества, с отводом стока в производственную канализацию или после предварительной очистки в дождевую канализацию. В ряде случаев необходимо оценивать целесообразность раздельной очистки стоков с производственных площадей, отличающихся по характеру и степени загрязнения территории.
3.26. Для очистки поверхностных сточных вод рекомендуется предусматривать простые в эксплуатации и надежные в работе сооружения механической и физико-химической очистки. Во всех случаях следует применять отстойные сооружения. Для интенсификации процесса очистки и обеспечения более глубокой степени очистки, чем та, которая достигается в отстойных сооружениях, рекомендуется применять фильтрацию, коагуляцию, флотацию.
При необходимости снижения содержания органических примесей осветленные сточные воды следует направлять на сооружения биологической очистки. Для интенсификации биологической очистки городских и поверхностных сточных вод допускается применять контактно-стабилизационный метод (на аэротенках).
4. КАНАЛИЗАЦИОННЫЕ СЕТИ
И СООРУЖЕНИЯ НА НИХ
УСЛОВИЯ ТРАССИРОВАНИЯ СЕТЕЙ
И ПРОКЛАДКИ ТРУБОПРОВОДОВ
4.1. Расположение сетей на генеральных планах, а также минимальные расстояния в плане и при пересечениях от наружной поверхности труб до сооружений и инженерных коммуникаций должны приниматься согласно СНиП II-89-80.
4.2. При параллельной прокладке нескольких напорных трубопроводов расстояние между наружной поверхностью труб следует принимать из условия производства работ, обеспечения защиты смежных трубопроводов при аварии на одном из них, в зависимости от материала труб, внутреннего давления и геологических условий согласно СНиП 2.04.02-84.
4.3. Проектирование коллекторов, прокладываемых щитовой проходкой или горным способом, в том числе коллекторов глубокого заложения, необходимо выполнять согласно СНиП II-91-77 и Указаниям по производству и приемке работ по сооружению коллекторных тоннелей способом щитовой проходки в городах и промышленных предприятиях (СН 322-74).
При параллельной прокладке двух коллекторов расстояние между ними следует принимать равным пяти диаметрам наибольшего из коллекторов, но не менее 10 м.
4.4. Надземная и наземная прокладка канализационных трубопроводов на территории населенных пунктов не допускается.
При пересечении глубоких оврагов, водотоков и водоемов, а также при укладке канализационных трубопроводов за пределами населенных пунктов допускается наземная и надземная прокладка трубопроводов.
ПОВОРОТЫ, СОЕДИНЕНИЯ
И ГЛУБИНА ЗАЛОЖЕНИЯ ТРУБОПРОВОДОВ
4.5. Угол между присоединяемой и отводящей трубами должен быть не менее 90°.
Примечание. Любой угол между присоединениями и отводящими трубопроводами допускается при устройстве в колодце перепада в виде стояка и присоединении дождеприемников с перепадом.
4.6. Повороты на коллекторах надлежит предусматривать в колодцах; радиус кривой поворота лотка необходимо принимать не менее диаметра трубы, на коллекторах диаметром 1200 мм и более — не менее пяти диаметров и предусматривать смотровые колодцы в начале и конце кривой.
Повороты коллекторов, сооружаемых с помощью щитовой проходки или горным способом, надлежит принимать согласно СНиП II-91-77.
4.7. Соединения трубопроводов разных диаметров следует предусматривать в колодцах по шелыгам труб. При обосновании допускается соединение труб по расчетному уровню воды.
4.8. Наименьшую глубину заложения канализационных трубопроводов необходимо принимать на основании опыта эксплуатации сетей в данном районе. При отсутствии данных по эксплуатации минимальную глубину заложения лотка трубопровода допускается принимать, для труб диаметром до 500 мм — на 0,3 м; для труб большего диаметра — на 0,5 м менее большей глубины проникания в грунт нулевой температуры, не менее 0,7 м до верха трубы, считая от отметок поверхности земли или планировки. Наименьшую глубину заложения коллекторов с постоянным (малоколеблющимся) расходом сточных вод необходимо определять теплотехническим и статическим расчетами.
Минимальную глубину заложения коллекторов, прокладываемых щитовой проходкой, необходимо принимать не менее 3 м от отметок поверхности земли или планировки до верха щита.
Трубопроводы, укладываемые на глубину 0,7 м и менее, считая от верха трубы, должны быть предохранены от промерзания и повреждения наземным транспортом.
Максимальную глубину заложения труб, а также коллекторов, прокладываемых щитовой проходкой или горным способом, надлежит определять расчетом в зависимости от материала труб, грунтовых условий, метода производства работ.
ТРУБЫ, УПОРЫ, АРМАТУРА
И ОСНОВАНИЯ ПОД ТРУБЫ
4.9. Для канализационных трубопроводов следует применять:
самотечных — безнапорные железобетонные, бетонные, керамические, чугунные, асбестоцементные, пластмассовые трубы и железобетонные детали;
напорных — напорные железобетонные, асбестоцементные, чугунные, стальные и пластмассовые трубы.
Примечания: 1. Применение чугунных труб для самотечной и стальных для напорной сетей допускается при прокладке в труднодоступных пунктах строительства, в вечномерзлых, просадочных грунтах, на подрабатываемых территориях, в местах переходов через водные преграды, под железными и автомобильными дорогами, в местах пересечения с сетями хозяйственно-питьевого водопровода, при прокладке трубопроводов по опорам эстакад, в местах, где возможны механические повреждения труб.
2. При укладке трубопроводов в агрессивных средах следует применять трубы, стойкие к коррозии.
3. Стальные трубопроводы должны быть покрыты снаружи антикоррозионной изоляцией. На участках возможной электрокоррозии надлежит предусматривать катодную защиту трубопроводов.
4.10. Тип основания под трубы необходимо принимать в зависимости от несущей способности грунтов и нагрузок.
Во всех грунтах, за исключением скальных, плывунных, болотистых и просадочных I типа, необходимо предусматривать укладку труб непосредственно на выровненное и утрамбованное дно траншеи.
В скальных грунтах необходимо предусматривать укладку труб на подушку толщиной не менее 10 см из местного песчаного или гравелистого грунта, в илистых, торфянистых и других слабых грунтах — на искусственное основание.
4.11. На напорных трубопроводах в необходимых случаях надлежит предусматривать установку задвижек, вантузов, выпусков и компенсаторов в колодцах.
4.12. Уклон напорных трубопроводов по направлению к выпуску следует принимать не менее 0,001.
Диаметр выпусков следует назначать из условия опорожнения участка трубопроводов в течение не более 3 ч.
Отвод сточной воды, выпускаемой из опорожняемого участка, надлежит предусматривать без сброса в водный объект в специальную камеру с последующей перекачкой в канализационную сеть или с вывозом сточных вод автоцистерной.
4.13. На поворотах напорных трубопроводов в вертикальной или горизонтальной плоскости, когда возникающие усилия не могут быть восприняты стыками труб, должны предусматриваться упоры согласно СНиП 2.04.02-84.
6. ОЧИСТНЫЕ СООРУЖЕНИЯ
ОБЩИЕ УКАЗАНИЯ
6.1. Степень очистки сточных вод необходимо определять в зависимости от местных условий и с учетом возможного использования очищенных сточных вод и поверхностного стока для производственных или сельскохозяйственных нужд.
Степень очистки сточных вод, сбрасываемых в водные объекты, должна отвечать требованиям „Правил охраны поверхностных вод от загрязнения сточными водами", утвержденных Минводхозом СССР, Минздравом СССР и Минрыбхозом СССР, и „Правил санитарной охраны прибрежных вод морей", утвержденных Минздравом СССР и согласованных Госстроем СССР, повторно используемых — санитарно-гигиеническим, а также технологическим требованиям потребителя.
Необходимо выявлять также возможность использования обезвреженных осадков сточных вод для удобрения и других целей.
Степень смешения и разбавления сточных вод с водой водного объекта следует определять согласно „Методическим указаниям по применению правил охраны поверхностных вод от загрязнения сточными водами".
6.2. Допустимые концентрации основных загрязняющих веществ в смеси бытовых и производственных сточных вод при поступлении на сооружения биологической очистки (в среднесуточной пробела также степень их удаления а процессе очистки следует принимать согласно „Правилам приема производственных сточных вод в системы канализации населенных пунктов", утвержденным Минжилкомхозом РСФСР и согласованным ГСЭУ Минздрава СССР, Минрыбхозом СССР, Минводхозом СССР и Госстроем СССР.
Примечания: 1. При невозможности обеспечить предельно допустимую концентрацию (ПДК) загрязняющих веществ в воде водного объекта с учетом эффекта очистки и степени разбавления их водой водного объекта концентрацию этих веществ, поступающих не очистные сооружения. надлежит снижать за счет устройства локальных очистных сооружений.
2. Содержание биогенных элементов ив должно быть менее 5 мг/п азота N и 1 мг/л фосфора Р на каждые 100 мг/л БПКполн.
6.3. Среднюю скорость окисления многокомпонентных смесей следует принимать по экспериментальным данным; при отсутствии их допускается принимать скорость окисления как средневзвешенную величину скоростей окисления веществ, входящих в многокомпонентную смесь.
6.4. Количество загрязняющих воду веществ на одного жителя для определения их концентрации в бытовых сточных водах необходимо принимать по табл. 25. Концентрацию загрязняющих веществ надлежит определять исходя из удельного водоотводения на одного жителя.
Таблица 25
Показатель
Количество загрязняющих веществ на одного жителя, г/сут
Взвешенные вещества
65
БПКполн неосветленной жидкости
75
БПКполн осветленной жидкости
40
Азот аммонийных солей N
8
Фосфаты Р2О5
3,3
В том числе от моющих веществ
1,6
Хлориды Сl
9
Поверхностно-активные вещества (ПАВ)
2,5
Примечания: 1. Количество загрязняющих веществ от населения, проживающего в неканализованных районах, надлежит учитывать в размере 33% от указанных в табл. 25.
2. При сбросе бытовых сточных вод промышленных предприятий в канализацию населенного пункта количество загрязняющих веществ от эксплуатационного персонала дополнительно не учитывается.
СООРУЖЕНИЯ ДЛЯ МЕХАНИЧЕСКОЙ ОЧИСТКИ
СТОЧНЫХ ВОД
Септики
6.78. Септики надлежит применять для механической очистки сточных вод, поступающих на поля подземной фильтрации, в песчано-гравийные фильтры, фильтрующие траншеи и фильтрующие колодцы.
6.79. Полный расчетный объем септика надлежит принимать: при расходе сточных вод до 5 м3/сут — не менее 3-кратного суточного притока, при расходе свыше 5 м3/сут — не менее 2,5-кратного.
Указанные расчетные объемы септиков следует принимать исходя из условия очистки их не менее одного раза в год.
При среднезимней температуре сточных вод выше 10 °С или при норме водоотведения свыше 150 л/сут на одного жителя полный расчетный объем септика допускается уменьшать на 15—20 %.
6.80. В зависимости от расхода сточных вод следует принимать: однокамерные септики — при расходе сточных вод до 1 м3/сут, двухкамерные — до 10 и трехкамерные — свыше 10 м3/сут.
6.81. Объем первой камеры следует принимать: в двухкамерных септиках — 0,75, в трехкамерных — 0,5 расчетного объема. При этом объем второй и третьей камер надлежит принимать по 0,25 расчетного объема.
В септиках, выполняемых из бетонных колец. все камеры следует принимать равного объема. В таких септиках при производительности свыше 5 м3/сут камеры надлежит предусматривать без отделений.
6.82. При необходимости обеззараживания сточных вод, выходящих из септика, следует предусматривать контактную камеру, размер которой в плане надлежит принимать не менее 0,75х1 м.
6.83. Лоток подводящей трубы должен быть расположен не менее чем на 0,05 м выше расчетного уровня жидкости в септике. Необходимо предусматривать устройства для задержания плавающих веществ и естественную вентиляцию.
6.84. Выпуски из зданий должны присоединяться к септикам через смотровые колодцы.
Аэротенки
6.140. Аэротенки различных типов следует применять для биологической очистки городских и производственных сточных вод.
Аэротенки, действующие по принципу вытеснителей, следует применять при отсутствии залповых поступлений токсичных веществ, а также на второй ступени двухступенчатых схем.
Комбинированные сооружения типа аэротенков-отстойников (аэроакселераторы, окситенки, флототенки, аэротенки-осветлители и др.) при обосновании допускается применять на любой ступени биологической очистки.
6.141. Регенерацию активного ила необходимо предусматривать при БПКполн поступающей в аэротенки воды свыше 150 мг/л, а также при наличии в воде вредных производственных примесей.
6.142. Вместимость аэротанков необходимо определять по среднечасовому поступлению воды за период аэрации в часы максимального притока.
Расход циркулирующего активного ила при расчете вместимости аэротенков без регенераторов и вторичных отстойников не учитывается.
6.143. Период аэрации tatm, ч, в аэротенках, работающих по принципу смесителей, следует определить по формуле
(48)
где Len — БПКполн поступающей в аэротенк сточной воды (с учетом снижения БПК при первичном отстаивании), мг/л;
Lex — БПКполн очищенной воды, мг/л;
ai — доза ила, г/л, определяемая технико-экономическим расчетом с учетом работы вторичных отстойников;
s — зольность ила, принимаемая по табл. 40;
r — удельная скорость окисления, мг БПКполн на 1 г беззольного вещества ила в 1 ч, определяемая по формуле
(49)
здесь rmax — максимальная скорость окисления, мг/(гЧч), принимаемая по табл. 40;
CO — концентрация растворенного кислорода, мг/л;
Kl — константа, характеризующая свойства органических загрязняющих веществ, мг БПКполн/л, и принимаемая по табл. 40;
КО — константа, характеризующая влияние кислорода, мг О2/л, и принимаемая по табл. 40;
j — коэффициент ингибирования продуктами распада активного ила, л/г, принимаемый по табл. 40.
Примечания: 1. Формулы (48) и (49) справедливы при среднегодовой температуре сточных вод 15 °С. При иной среднегодовой температуре сточных вод Tw продолжительность аэрации, вычисленная по формуле (48), должна быть умножена на отношение 15/T w.
2. Продолжительность аэрации во всех случаях не должна быть менее 2 ч.
Таблица 40
Сточные воды
rmax,
мг БПКполгн/(гЧч)
Kl,
мг БПКполн/л
КО,
мг О2/л
j,
л/г
s
Городские
85
33
0,625
0,07
0,3
Производственные:
а) нефтеперерабатывающих заводов:
I система
33
3
1,81
0,17
—
II „
59
24
1,66
0,158
—
6) азотной промышленности
140
6
2,4
1,11
—
в) заводов синтетического каучука
80
30
0,6
0,06
0,15
г) целлюлозно-бумажной промышленности:
сульфатно-целлюлозное произ-водство
650
100
1,5
2
0,16
сульфитно-целлюлозное „
700
90
1,6
2
0,17
д) заводов искусственного волокна (вискозы)
90
35
0,7
0,27
—
в) фабрик первичной обработки шерсти:
I ступень
32
156
—
0,23
—
II „
6
33
—
0,2
—
ж) дрожжевых заводов
232
90
1,66
0,16
0,35
з) заводов органического синтеза
83
200
1,7
0,27
—
и) микробиологической промышленности:
производство лизина
280
28
1,67
0,17
0,15
„ биовита и витамицина
1720
167
1,5
0,98
0,12
к) свинооткормочных комплексов:
I ступень
454
55
1,65
0,176
0,25
II „
15
72
1,68
0,171
0,3
Примечание. Для других производств указанные параметры следует принимать по данным научно-исследовательских организаций.
6.144. Период аэрации tatv, ч, в аэротенках-вытеснителях надлежит рассчитывать по формуле
(50)
где Kp — коэффициент, учитывающий влияние продольного перемешивания: Kp = 1,5 при биологической очистке до L ex = 15 мг/л; Kp = 1,25 при Lex > 30 мг/л;
Lmix — БПКполн, определяемая с учетом разбавления рециркуляционным расходом:
(51)
здесь Ri — степень рециркуляции активного ила, определяемая по формуле (52); обозначения величин ai, rmax , CO, Len, Lex, Kl, KO, j, s, следует принимать по формуле (49).
Примечание. Режим вытеснения обеспечивается при отношении длины коридоров l к ширине b свыше 30. При l/b < 30 необходимо предусматривать секционирование коридоров с числом ячеек пять-шесть.
6.145. Степень рециркуляции активного ила Ri, в аэротенках следует рассчитывать по формуле
(52)
где ai — доза ила в аэротенке, г/л;
Ji — иловый индекс, см3/г.
Примечания: 1. Формула справедлива при Ji < 175 см3/г и ai до 5 г/л.
2. Величина Ri должна быть не менее 0,3 для отстойников с илососами, 0,4 — с илоскребами, 0,6 — при самотечном удалении ила.
6.146. Величину илового индекса необходимо определять экспериментально при разбавлении иловой смеси до 1 г/л в зависимости от нагрузки на ил. Для городских и основных видов производственных сточных вод допускается определять величину Ji по табл. 41.
Таблица 41
Сточные воды
Иловый индекс Ji, см3/г,
при нагрузке на ил qi, мг/(гЧсут)
100
200
300
400
500
600
Городские
130
100
70
80
95
130
Производственные:
а) нефтеперерабатывающих заводов
—
120
70
80
120
160
б) заводов синтетического каучука
—
100
40
70
100
130
в) комбинатов искусственного волокна
—
300
200
250
280
400
г) целлюлозно-бумажных комбинатов
—
220
150
170
200
220
д) химкомбинатов азотной промышленности
—
90
60
75
90
120
Примечание. Для окситенков величина Ji должна быть снижена в 1,3—1,5 раза.
Нагрузку на ил qi, мг БПКполн на 1 г беззольного вещества ила в сутки, надлежит рассчитывать по формуле
(53)
где tat — период аэрации, ч.
6.147. При проектировании аэротенков с регенераторами продолжительность окисления органических загрязняющих веществ tO, ч, надлежит определять по формуле
(54)
где Ri — следует определять по формуле (52);
ar — доза ила в регенераторе, г/л, определяемая по формуле
(55)
r — удельная скорость окисления для аэротенков — смесителей и вытеснителей, определяемая по формуле (49) при дозе ила ar.
Продолжительность обработки воды в аэротенке tat, ч, необходимо определять по формуле
(56)
Продолжительность регенерации tr, ч, надлежит определять по формуле
(57)
Вместимость аэротенка Wat, м3, следует определять по формуле
(58)
где qw — расчетный расход сточных вод, м3/ч.
Вместимость регенераторов Wr, м3, следует определять по формуле
(59)
6.148. Прирост активного ила Pi, мг/л, в аэротенках надлежит определять по формуле
(60)
где Ccdp — концентрация взвешенных веществ в сточной воде, поступающей в аэротенк, мг/л;
Kg — коэффициент прироста; для городских и близких к ним по составу производственных сточных вод Kg = 0,3; при очистке сточных вод в окситенках величина Kg снижается до 0,25.
6.149. Необходимо предусматривать возможность работы аэротенков с переменным объемом регенераторов.
6.150. Для аэротенков и регенераторов надлежит принимать:
число секций — не менее двух;
рабочую глубину — 3—6 м, свыше — при обосновании;
отношение ширины коридора к рабочей глубине — от 1:1 до 2:1.
6.151. Аэраторы в аэротенках допускается применять:
мелкопузырчатые — пористые керамические и пластмассовые материалы (фильтросные пластины, трубы, диффузоры) и синтетические ткани;
среднепузырчатые — щелевые и дырчатые трубы;
крупнопузырчатые — трубы с открытым концом;
механические и пневмомеханические.
6.152. Число аэраторов в регенераторах и на первой половине длины аэротенков-вытеснителей надлежит принимать вдвое больше, чем на остальной длине аэротенков.
6.153. Заглубление аэраторов следует принимать в соответствии с давлением воздуходувного оборудования и с учетом потерь в разводящих коммуникациях и аэраторах (см. п. 5.34).
6.154. В аэротенках необходимо предусматривать возможность опорожнения и устройства для выпуска воды из аэраторов.
6.155. При необходимости в аэротенках надлежит предусматривать мероприятия по локализации пены — орошение водой через брызгала или применение химических антивспенивателей.
Интенсивность разбрызгивания при орошении следует принимать по экспериментальным данным.
Применение химических антивспенивателей должно быть согласовано с органами санитарно-эпидемиологической службы и охраны рыбных запасов.
6.156. Рециркуляцию активного ила следует осуществлять эрлифтами или насосами.
6.157. Удельный расход воздуха qair, м3/м3 очищаемой воды, при пневматической системе аэрации надлежит определять по формуле
(61)
где qO — удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15—20 мг/л — 1,1, при очистке до БПКполн свыше 20 мг/л — 0.9;
K1 — коэффициент, учитывающий тип аэратора и принимаемый для мелкопузырчатой аэрации в зависимости от соотношения площадей аэрируемой зоны и аэротенка faz /fat по табл. 42; для среднепузырчатой и низконапорной K1 = 0,75;
K2 — коэффициент, зависимый от глубины погружения аэраторов ha и принимаемый по табл. 43;
KT — коэффициент, учитывающий температуру сточных вод. который следует определять по формуле
(62)
здесь Tw — среднемесячная температура воды за летний период, °С;
K3 — коэффициент качества воды, принимаемый для городских сточных вод 0,85; при наличии СПАВ принимается в зависимости от величины faz /f at по табл. 44, для производственных сточных вод — по опытным данным, при их отсутствии допускается принимать K3 = 0,7;
Ca — растворимость кислорода воздуха в воде, мг/л, определяемая по формуле
(63)
здесь CT — растворимость кислорода в воде в зависимости от температуры и атмосферного давления, принимаемая по справочным данным;
ha — глубина погружения аэратора, м;
CO — средняя концентрация кислорода в аэротенке, мг/л; в первом приближении СО допускается принимать 2 мг/л и необходимо уточнять на основе технико-экономических расчетов с учетом формул (48) и (49).
Площадь аэрируемой зоны для пневматических аэраторов включает просветы между ними до 0,3 м.
Интенсивность аэрации Ja, м3/(м2Чч), надлежит определять по формуле
(64)
где Hat — рабочая глубина аэротенка, м;
tat — период аэрации, ч.
Если вычисленная интенсивность аэрации свыше Ja,max для принятого значения K1, необходимо увеличить площадь аэрируемой зоны; если менее Ja,min для принятого значения K 2 — следует увеличить расход воздуха, приняв Ja,min по табл. 43.
6.158. При подборе механических, пневмомеханических и струйных аэраторов следует исходить из их производительности по кислороду, определенной при температуре 20 °С и отсутствии растворенного в воде кислорода, скорости потребления и массообменных свойств жидкости, характеризуемых коэффициентами K T и K3 и дефицитом кислорода (Ca — CO) /Ca и определяемых по п. 6.157.
Число аэраторов Nma Для аэротенков и биологических прудов следует определять по формуле
(65)
где Wat — объем сооружения, м3;
Qma — производительность аэратора по кислороду, кг/ч, принимаемая по паспортным данным;
tat — продолжительность пребывания жидкости в сооружении, ч; значения остальных параметров следует принимать по формуле (61).
Примечание. При определенном числе механических аэраторов необходимо проверять их перемешивающую способность по поддержанию активного ила во взвешенном состоянии. Зону действия аэратора следует определять расчетом; ориентировочно она составляет 5—6 диаметров рабочего колеса.
6.159. Окситенки рекомендуется применять при условии подачи технического кислорода от кислородных установок промышленных предприятий. Допускается применение их и при строительстве кислородной станции в составе очистных сооружений.
Окситенки должны быть оборудованы механическими аэраторами, легким герметичным перекрытием, системой автоматической подпитки кислорода и продувки газовой фазы, что должно обеспечивать эффективность использования кислорода 90 %.
Для очистки производственных сточных вод и их
Таблица 42
faz /fat
0,05
0,1
0,2
0,3
0,4
0,5
0,75
1
K1
1,34
1,47
1,68
1,89
1,94
2
2,13
2,3
Ja max, м3/(м2Чч)
5
10
20
30
40
50
75
100
Таблица 43
ha, м
0,5
0,6
0,7
0,8
0,9
1
3
4
5
6
K2
0,4
0,46
0,6
0,8
0,9
1
2,08
2,52
2,92
3,3
Ja,min, м3/(м2Чч)
48
42
38
32
28
24
4
3,5
3
2,5
Таблица 44
faz /fat
0,05
0,1
0,2
0,3
0,4
0,5
0,75
1
K3
0,59
0,59
0,64
0,66
0,72
0,77
0,88
0,99
смеси с городскими сточными водами следует применять окситенки, совмещенные с илоотделителем. Объем зоны аэрации окситенка надлежит рассчитывать по формулам (48) и (49). Концентрацию кислорода в иловой смеси окситенка следует принимать в пределах 6—12 мг/л, дозу ила — 6—10 г/л.
Аэрационные установки на полное окисление
(аэротенки с продленной аэрацией)
6.166. Аэрационные установки на полное окисление следует применять для биологической очистки сточных вод.
Перед подачей сточных вод на установку необходимо предусматривать задержание крупных механических примесей.
6.167. Продолжительность аэрации в аэротенках на полное окисление следует определять по формуле (48), при этом надлежит принимать:
r — среднюю скорость окисления по БПКполн — 6 мг/(гЧч);
ai — дозу ила — 3—4 г/л;
s — зольность ила — 0,35.
Удельный расход воздуха следует определять по формуле (61), при этом надлежит принимать:
qO — удельный расход кислорода, мг/мг снятой БПКполн —1,25;
K1, K2, KT, K3, Ca — по данным, приведенным в п. 6.157.
6.168. Продолжительность пребывания сточных вод в зоне отстаивания при максимальном притоке должна составлять не менее 1 ,5 ч.
6.169. Количество избыточного активного ила следует принимать 0,35 кг на 1 кг БПКполн. Удаление избыточного ила допускается предусматривать как из отстойника, так и из аэротенка при достижении дозы ила 5—6 г/л.
Влажность ила, удаляемого из отстойника, равна 98 %, из аэротенка — 99,4 %.
6.170. Нагрузку на иловые площадки следует принимать как для осадков, сброженных в мезофильных условиях.